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The first stage of a study of model blends using essentially monodisperse linear and three-arm-star polystyrenes is
described in relation to the structure-specific blending rule of McLeish and O’Connor and the more general
blending law of Tsenoglou for the relaxation shear modulus G(t). The results are considered in relation to the
polymer molecular weights, consequent level of entanglement and the effect of cooperative relaxation in the
choice of blending rule theory and quality of fit to the data. It is anticipated that the complete study with a range of
linear and star polystyrenes will aid the understanding of more general linear–branched polymer blend systems.
q 1998 Elsevier Science Ltd. All rights reserved.
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Introduction

The rheology of blends of linear polymers with long-
chain branched polymers has received much less attention
than linear–linear polymer blends. To further our under-
standing of the linear–branched blends we are also studying
well characterized, structure-specific, blends of linear and
star polymers in order to establish the contribution of the
molecular mechanisms in controlling mutual relaxation of
blends.

Although the addition rule of Tsenoglou1–3 works well
enough with linear–linear blends, it is not clear that it
should be applicable to blends of linear and branched
polymers, because the molecular dynamics responsible for
stress–relaxation in the two cases are very different.
Whereas the linear polymer is free to reptate or relax by
motion of the entire chain4, the motion of the branched
polymer will be constrained by the branch points and
limited to progressive retractions5–7. However, we have
found that an empirical extension of the Tsenoglou blending
rule can give a satisfactory representation of the rheology of
some linear–branched polyethylene blends using poly-
disperse commercial polymers8. In order to understand the
mechanisms involved, we are studying some idealized
model blends of monodisperse linear and star-shaped
polymers, which might be expected to conform more
closely to the specific star–linear blending rule of McLeish
and O’Connor6, allowing us to compare the application and
limitation of the two blending rules. Earlier work on a
similar system by Struglinskiet al.9 showed in particular
that relaxation time scales change on blending branched
with linear materials.

The work reported here represents the first step in the
study of a range of star–linear blends intended to cover a
range of polymer molecular weights, particularly of the
linear in relation to the star polymer. Initially blends of an
essentially monodisperse three-arm polystyrene star poly-
mer with linear polymer equivalent to one arm of the star

were manufactured within the Polymer IRC at the
University of Bradford.

Equations from theory

The basic blending rules used here are given in refs1–3.
The empirical extension of the Tsenoglou theory7 takes the
generalized form for G(t):

G(t) ¼ (f1G1=a
1 (t) þ f2G1=a

2 (t))a (1)

wherea is blend dependent and can be determined from the
zero shear viscosities of the component polymers.f1 andf2

are the blend fractions.
In the original form of the equation for linear polymer

blends1–3, a ¼ 2, but in the case of blends with branched
polymers, e.g. for linear with branched polyethylene7:

a¼ A
h0B

h0L

� �
þ B

wherea , 2 or a . 2 depending on the blend components,
h0B andh0L are the zero shear viscosities of the branched and
linear polymers respectively, andA andB are constants.

In the case of blends using monodisperse ‘model’ star and
linear polymers, the specific molecular theory of McLeish
and O’Connor, based on a tube model for entangled polymer
melts, takes the form:

G(t) ¼ f1G1=b
1 (t)

∫1

0
e¹ t=t(X)dXþ f2G1=b

2 (t)e¹ t=Trep

 !b

(2)

where dX is an element at distanceX along a star arm,Trep is
the reptation time of the linear polymer, and it is assumed
via G1 andG2 that the value ofGo for the linear and star
polymers may differ in practice.

The theory allows for cooperative relaxation of the star
and linear components with:

t(X) ¼ t02a
X2

2
¹ f1

X3

3

� �
(3a)
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for X , Xrep, wherea ¼
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for X . Xrep. HereXrep is the coordinate of the star arm just
unrelaxed at the reptation time of the linear polymer. The
relaxation of the linear polymer speeds up that of the
remaining star polymer by ‘constraint release’, modelled
in this approach by a widening of the effective tube sur-
rounding the star polymer arms. In the case of a linear
polymer of lower molecular weight, which may relax
quickly by reptation relative to the relaxation of a star
arm, a simpler form of equation with less cooperative beha-
viour may be appropriate, as:

t(X) ¼ t02a
X2

2
¹

X3

3

� �
(4)

The various forms of these chosen models are investigated
according to known structure of the blend using experimen-
tal data.

Experimental

Polymers. Essentially monodisperse polystyrene poly-
mers were made in the form of three-arm star polymers
with arms of essentially equal length. Residual linear poly-
mer was removed by solvent fractionation. Linear polymer
was subsequently added back to produce blends from solu-
tion. For the blend reported here the linear polystyrene had a
molecular weight of approximately 78 000, which was the
same as one star-arm, i.e. the star polymer molecular weight
was approximately 234 000. Blends of 0, 25, 50, 75 and
100% star polymer were produced.

Samples were prepared for rheology from a powder or
fluff by cold pressing to form discs of just over 1 mm thick.
These were vacuum dried at 808C to remove any residual
moisture and solvent.

Measurement. All measurements were made using a
Rheometrics Dynamic Analyser (RDA2) at various tem-
peratures in a nitrogen atmosphere, with all data referenced
to 1608C. A torsional transducer range of 0.2–200 gm cm
was used with a 10 mm diameter 58 cone and plate geome-
try. This allows the measurements to be made with less than
50 mg of polymer. The time dependence of the relaxation
modulus G(t) from an angular step shear strain and the
frequency response of the dynamic moduliG9 and G0
were both determined in a linear viscoelastic response
range of strain independent data.

Results

Measurements ofG9 and G0 as functions of angular
frequency and G(t) as a function of time,t, made at
appropriate temperatures, were shifted by time–temperature
superposition to 1608C, covering the ranges of from 10¹2 to
over 104 rad s¹1 for G9 andG0, and t from 10¹3 to almost
102 s for G(t).

Due probably to the molecular weight of 78 000 per star-
arm and for the linear polymer, which is only four
entanglements for polystyrene, the frequency dependence
of G9, G0, shown inFigures 1 and 2for the linear and star
polymers respectively, does not follow an ideal classic form,
to determine values ofto, Trep andGo, for example. We have
therefore used the additional check of best theoretical fit to
the G(t) data for the star and linear blend components to
confirm appropriate values for these parameters. Although
theory tends to assume a singleGo for a polymer type, we
have found that these linear and star polystyrenes have
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Figure 1 Dynamic shear moduli of the linear polystyrene: elastic modulusG9, B; loss modulusG0, O



slightly different Go values, as with linear and branched
polyethylenes.

The theoretical fits of G(t) for these star–linear blends
using the McLeish–O’Connor blending rule are shown with
equations (2) and (3) usingb ¼ 2 in Figure 3, and with
equations (2) and (4) inFigure 4. The fit of the Tsenoglou

blending rule with the original power index ofa ¼ 2 is
shown inFigure 5.

Discussion and conclusions

It is clear that the best overall theoretical fit to the
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Figure 2 Dynamic shear moduli of the three-Arm star polystyrene: elastic modulusG9, B; loss modulusG0, O

Figure 3 Relaxation modulus in shear, G(t), for blends of the three-Arm star with the linear polystyrene. Lines are McLeish and O’Connor theory. Points are
the measured data for: 100% linear PS,B; 75/25 linear/star,O; 50/50 linear/star,l; 25/75 linear/star,K; 100% star PS,A



experimental G(t) data is achieved with the simplified
version of the McLeish and O’Connor blending rule
(equations (2) and (4)), which is specific to these star–
linear polymer blends. The relatively low molecular weight
of the linear polystyrene allows it to relax largely by

fluctuation in a primitive entangled path length, similarly to
the star-arms before reptation intervenes, and therefore the
contribution to cooperative relaxation within the blend is
reduced or simplified. It is therefore appropriate that the
simplified equation (4) in this blending rule should provide
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Figure 4 Relaxation modulus in shear, G(t), for blends of the three-arm star with the linear polystyrene. Lines are McLeish and O’Connor theory simplified
for reduced cooperative relaxation. Points are the measured data with symbols as inFigure 3

Figure 5 Relaxation modulus in shear, G(t), for blends of the three-arm star with the linear polystyrene. Lines are Tsenoglou theory. Points are the measured
data with symbols as inFigure 3



the best fit. In addition the prediction is independent of the
detail of experimental G(t) data for the 100% star and 100%
linear polystyrene, which effectively form the boundary
conditions with the Tsenoglou blending rule.

At longer times the relaxation of G(t) for the linear
polystyrene reaches the minimum torsional limit of the
Rheometrics RDA2 transducer, so the accuracy of data are
restricted. The valid fit of the Tsenoglou theory at longer
times may therefore be restricted. To explore this problem
we have replaced the worst experimental data, for the linear
polymer, by the linear polymer theoretical curve from the
McLeish–O’Connor theory, and the resulting improvement
in the fit of the Tsenoglou rule is shown inFigure 6. Within
the limits of the data we observe that increasing the power
index, froma ¼ 2 to a ¼ 3 for example, optimizes the fit of
the Tsenoglou rule at longer times in preference to shorter
times. We therefore speculate that while the original
Tsenoglou rule witha ¼ 2 is suited to linear polymer
relaxation within a blend, a higher index, e.g.a ¼ 3, may
be more appropriate for the longer time scale of the retrac-
tion of star-arms or long chain branching, whenever an
empirical approach is necessary, or a molecular theory
unfeasible.

To achieve a more complete picture, and thereby a better
understanding, of the way these two theories represent a
blend of linear and star or linear and branched polymers, it
will be essential to evaluate a range of star–linear polymer

blends with widely differing molecular weight combina-
tions. Recently, Milner and McLeish10 calculated explicit
relaxation spectra for monodisperse star polymer melt,
including the weakX-dependence of the prefactorsto in
equations (3) and (4) and effects of unconstrained Rouse
motion of the free end. Extension of these ideas to star–
linear blends will sharpen our understanding of the role of
constraint-release in these highly cooperative dynamics. It is
anticipated that this may also explain why a modified
Tsenoglou blending rule, witha dependent on the zero shear
viscosities of the component polymers7, proved useful with
commercial linear and branched polyethylene blends.
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Figure 6 Relaxation modulus in shear, G(t), for blends of the three-arm star with the linear polystyrene. Lines are Tsenoglou theory using McLeish and
O’Connor theory to calculate the linear polystyrene data (broken line). Points are the measured data with symbols as inFigure 3


